_
-
Ω
a
Ν
0
Q
2
Ξ
\supset
Q
₹
≷
≥
\sim
~
^
7
Ξ
_

STUDY MODULE D	ESCRIPTION FORM		
Name of the module/subject		Code 010324381010324817	
Field of study	Profile of study (general academic, practical)	Year /Semester	
Electrical Engineering	general academic	4/8	
Elective path/specialty	Subject offered in:	Course (compulsory, elective)	
Lighting Engineering	Polish	obligatory	
Cycle of study:	Form of study (full-time,part-time)		
First-cycle studies	part-time		
No. of hours		No. of credits	
Lecture: 9 Classes: - Laboratory: -	Project/seminars:	- 1	
Status of the course in the study program (Basic, major, other)	(university-wide, from another fi	eld)	
other	university-wide		
Education areas and fields of science and art		ECTS distribution (number and %)	
technical sciences		1 100%	
Technical sciences		1 100%	
Responsible for subject / lecturer:	Responsible for subject	t / lecturer:	
dr hab. inż. Jacek Hauser	dr inż. Przemysław Skrzypo	zak	
email: jacek.hauser@put.poznan.pl	email: przemyslaw.s.skrzypczak@put.poznan.pl		
tel. 61 6652688	tel. 61 6652585		
Faculty of Electrical Engineering	Faculty of Electrical Engineering		
ul. Piotrowo 3A 60-965 Poznań	ul. Piotrowo 3A 60-965 Poz	nań	
5 110 1 0 21 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

Prerequisites in terms of knowledge, skills and social competencies:

		Knowledge of the basics of temperature measurement methods, heat flow paths. Knowledge of the physics of phenomena: Conduction, Convection and Radiation.			
2	Skills	Ability to use knowledge in the field of electrical engineering and electrothermics.			
3	Social competencies	He is aware of the need to broaden his knowledge, readiness to search for needed information in the source material, willingness to cooperate within the team.			

Assumptions and objectives of the course:

- -Identify the amount of heat generated by light sources
- Determine the main electrothermal path and power flow in the system
- Understand the losses occurring in the electrothermal track
- Understanding with calculations concerning electromagnetic thermal and thermokinetic transformations with heat propagation.

Study outcomes and reference to the educational results for a field of study

Knowledge:

- 1. He knows the elements of the heat and electrical systems that are important for the flow of heat [K_W15+++]
- 2. He knows the main heat transfer for light sources [K_W16+++]

Skills:

- 1. On the basis of physical dependencies and material parameters obtained from the literature it is possible to determine the power levels in the main electrothermal track and the loss track [K_U14++]
- 2. Can distinguish in the thermal system an electrothermal path, the place of conversion of monochromatic energy into useful heat energy [K_U23+]

Social competencies:

1. Can work in a team, demonstrate ability to coordinate team work - [K_K03+++]

Assessment methods of study outcomes

On the basis of individual activity at the lecture, the mark on the final test (last session), an individual student assessment is made - an assessment is made.

Course description

lectures

- lecture with slide presentation on generation of heat and energy balance in various light sources,
- lecture conducted in the form of discussion on the influence of temperature on electrical parameters and photometric light sources.
- presentation in the form of slides with the preceding content related to the subjects of light technology, covering the subject of the construction of electromagnetic transducers
- lecture supported by computational examples of thermal parameters of energy conversion systems
- presentation in tabular form with a verbal commentary on the thermal requirements for the electrical components used in the construction of the lighting fixture.

Applied methods of education: lectures:

- lecture with multimedia presentation (including: drawings, photographs, animations, sound, films) supplemented by examples given on the board
- an interactive lecture with questions to a group of students or to specific students
- Student activity is taken into account during the final assessment
- during the lecture, initiating the discussion
- theory presented in close connection with practice
- theory presented in connection with current knowledge of students
- consideration of various aspects of the presented issues, including: economic ones

The content of the program is based on the results of research carried out at the Institute.

Updated 2017:

- presentation of temperature distributions based on films and photos made by thermal imaging camera

Basic bibliography:

- 1. Hauser J.: Elektrotechnika. Podstawy elektrotermii i techniki świetlnej. Wydawnictwo Politechniki Poznańskiej, Poznań 2006
- 2. Michalski L., Eckersdorf K., Kucharski J.: Termometria. Przyrządy i pomiary. Wydawnictwo Politechniki Łódzkiej, Łódź 1998
- 3. Wesołowski M, Skrzypczak P, Hauser J.: Thermal resistance of LED diodes. Precission of catalogue data. Elektronika 12/2015 s.45-49

Additional bibliography:

- 1. Hering M.: Podstawy elektrotermii cz. I. WNT, Warszawa 1992.
- 2. Hering M.: Podstawy elektrotermii cz. II. WNT, Warszawa 1998

Result of average student's workload

Activity	Time (working hours)
1. udział w zajęciach wykładowych	9
2. udział w konsultacjach z wykładowcą	5
3. przygotowanie do kolokwium zaliczeniowego	5
4. udział w zaliczeniach	2

Student's workload

Source of workload	hours	ECTS
Total workload	21	1
Contact hours	16	1
Practical activities	0	0